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Chapter 11 Probabilistic Method

Definition A probability space is a triple (Q, 2, P), where Q is a set, ¥ C 29 is a g-algebra on Q (a collection
of subsets containing 2 and closed on complements, countable unions and countable intersections), and P is a
countably additive measure on ¥ with P[Q2] = 1. The elements of 3 are called events and the elements of {2 are
called elementary events. For an event A, P[A] is called the probability of A.

We will consider § finite and ¥ = 2 in our examples later.
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Events A, B are independent if P[AN B] P[A]P[B]. More generally, events A, ..., A, are independent if for
any subset of indices I C [n]
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4: Find three events A;, As and Az that are pairwise independent but not mutually independent.

(You need to say what is (2, %, P) as well.)
Hint: Q = {a,b,c,d} and Plz] = 1 for each x € Q could work.
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E®®O by Bernard Lidicky, somewhat following Vondrak, Matousek.
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For events A and B with P[B] > 0, we define the conditional probability of A, given that B occurs, as

P[A|B] — %
5: Simplify the formula for independent events A and B. ? !A N SB ? U'B P L 53
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A real random variable on a probability space (2, %, P) is a function X : Q — R that is P-measurable. (That
is, for any a € B,{w € Q: X(w) <a} € X)) 0 VANCE A0 TE Ap i

We use 2 discrete, so no trouble with measurable in our case. /VA 1ve
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Expectation for finite 2 can be expressed as E[X] = 3"  _oP[whX (w) w A <

Real random variables X, Y are independent if for every two measurable sets A, B C R,
P[Xe€ AandY € B]=P[X € A] - P[Y € B].
For verification, it is enough to check

P X <aand Y <b =P[X <aqa|-P[Y <]

o Whespedr B [{ s € S XCMSC:A{]

7: Show the following for a finite probability space. If X and Y are independent random variables, then
E[XY]=FE[X]-E]Y].
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2-coloring/hypergraphs - Construct something random.
A k-uniform hypergraph (V, E) has V as a set of vertices and edges E C (‘Ig) That is, edges are k-subsets.

A hypergraph is c-colorable if its vertices can be colored with ¢ colors so that no edge is monochromatic i.e., at
least two different colors appear in every edge.

Let m(k) denote the smallest number of edges in a k-uniform hypergraph that is not 2-colorable.

8: What is m(2)? j WA (,L') - 3

9: Use probabilistic method to show that for any k > 2,
m(k) > 2F1, NYARY]
Hint: Union bound.
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Linearity of Expectation

Linearity of Expectation Let Xi,---, X, be random variables, X =1 X7 +--- , +c¢, X}, then
EX] = aE[Xi] + - + ¢, E[X,].

Definition For an event A, the indicator random variable I4 has value 1 if event A occurs and has value 0
otherwise.

10: Calculate the expected number of fixed points of random permuation o on {1,...,n}, i.e., the number of
i such that o (i) = 1.
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11: Show that there is a tournament on n vertices that has at least 2,?11 Hamiltonian paths.

Remark: Alon(1990) proved that the maximum number of Hamiltonian paths is at most en3/? 2ﬁ1.

12: Show that any graph G with e edges contains a bipartite subgraph with at least e/2 edges.
Hint: randomly partition vertices into two parts.

The above result can be improved:
13: Show that if G has 2n vertices and e edges, then it contains a bipartite subgraph with at least 5" e edges.

If G has 2n + 1 vertices and e edges, then it contains a bipartite subgraph with at least 2’;1116 edges

14: Given vectors vy, ...,v, € R™ with |v;| = 1. Show that there exist e1,...,&, = +1 such that
|51U1 + -+ 5nvn’ < \/ﬁ,
and also there exist €1,...,&, = £1 such that

letvr 4 - 4 envp| > V1.

Hint: pick ¢; randomly
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15: Given vectors vy,...,v, € R" with |v;| < 1. Let p1,...,p, € [0,1] be arbitrary, and set w = pjv; + -+ +

PnUn. Then there exist €1,...,&, € {0,1} so that set v =¢ejv1 + -+ + £,v,, we have
n
|lw —v| < \QF

16: Let F' be a family of subsets of [n] = {1,...,n} such that there are no A, B € F satisfying A C B. Let
o be a random permutation of [n]. Consider the random variable X = |{i : {c(1),0(2),...,0(i)} € F'}|. Prove
|F| < (Ln72 j) by considering the expectation of X.
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Some estimates:

(I—p)™ <e?™ (1—p)>ePlor0<p<

N | —

17: (Bonus) Let (Q,2%, P) be a finite probability space, where all elementary events have the same probability.
Show that if || is a prime, then there does not exist a pair of non-trivial independent events. Trivial events
are () and Q.
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